

## DPF Core Principles and Community Guidelines (CP&CG)



- By participating in this meeting, you agree to adhere to the CP&CG
  - Respect and support community members
  - Commit to constructive dialogue and take initiative
  - Details of what this means, expectations for behavior, and accountability procedures are provided in the CP&CG document linked at: <a href="https://snowmass21.org/cpcg/start">https://snowmass21.org/cpcg/start</a>
- Everyone is invited to invoke the CP&CG as needed to encourage constructive and supportive collaboration
- The conveners of this meeting are your recommended first point of contact for reports of CP&CG violations occurring here
  - The conveners have received training in the CP&CG and how to handle reports
  - The CP&CG accountability procedure is designed to encourage early intervention and is flexible enough to appropriately address issues ranging from the discourteous to the egregious
  - Please do not hesitate to contact us!
- Snowmass is most successful when everyone's voice can be heard!

# Neutrinos, dark matter, and underground facilities

Cross frontier: NF/CF/UF

Hugh Lippincott (moderator), Tim Bolton, Patrick Decowski, Alvine Kamaha, Brianna Mount, Gabriel Orebi Gann, Danielle Speller

# Goals of this session

- Discuss underground facility needs for future neutrino and cosmic frontier experiments
- Do we have adequate capacity underground as a community?
- What should we do to better organize our underground facilities?

#### **Stakeholders**

- Cosmic Frontier, dark matter direct detection experiments
- Neutrino Frontier: low-background experiments, including low-energy astrophysics and high-energy long baseline neutrino physics
- Underground Frontier siting and facilities for future experiments,
  optimization/coordination of current use across experiments and fields

#### Supporting Capabilities for Underground Experiments Survey

Gather information on the needs of current and future underground experiments, and the capabilities of existing underground labs, in terms of

- Cleanliness requirements (e.g. cleanroom type, size, dust & radon concentration measurements and surface contamination, need for low-radon space)
- Underground assay needs (e.g. material to be assayed, techniques by which they will be assayed, sensitivity needed, are results proprietary?)
- Need for underground fabrication/prototyping facilities, need for underground storage of material

Please be on the lookout for the email with the <u>survey link</u> and contact us\* with questions/comments or to ensure you receive the survey.

#### Panelists (CW)

- Mary Bishai, BNL (DUNE)
- Laura Marini, UC Berkeley (CUORE)
- Elaine McCluskey, FNAL/SURF (LBNF/DUNE)
- Sean Paling, Boulby Director
- Kim Palladino, Oxford (LZ)
- Nigel Smith, SNOLAB Director
- Bob Svoboda, UC Davis ()









### Some discussion questions (but not meant to crowd out conversation)

- Do we have enough space underground to do the physics we want to do in the next decade?
- Do we need new UG capabilities to accomplish our science goals?
- What would you like to see as an outcome of the Snowmass process (specifically with regard to "Neutrinos, dark matter, and underground facilities)?
- ...